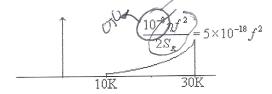
$$k \cdot f_{\Delta} = 1 \qquad k = \frac{1}{f_{\Delta}} = 10^{-4}$$

La potencia de ruido a la salida es la obtenida anteriormente multiplicada por k².

$$\Rightarrow N_1 = \frac{10^{-5}}{3}$$

$$S_1 = \overline{x_1^2} = 1$$
 \Rightarrow $\left(\frac{S}{N}\right)_1 = \frac{1}{10^{-5}} = 3 \times 10^5$

Por la rama inferior, luego del BPF, la Densidad espectral de potencia del ruido es



$$N_R = 10 \times 10^{-18} \int_{10K}^{30K} f^2 df = \frac{10^{-17}}{3} f^3 \Big|_{10K}^{30K} = \frac{26}{3} \times 10^{-5}$$

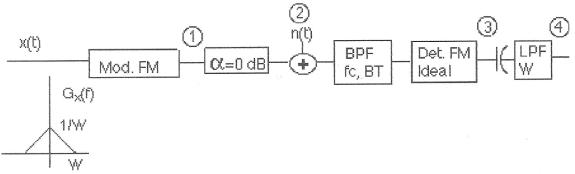
 $S_{D_2} = \overline{x_2^2} = 1$ La potencia del ruido luego del detector síncrono es la misma que a la entrada: $\overline{n_2^2} = \overline{n^2}$

$$\left(\frac{S}{N}\right)_{D_2} = \frac{1}{\frac{26}{3} \times 10^{-5}} = \frac{3}{26} \times 10^5$$

Observe que esta SNR es peor que para $y_{\rm DI}$. La zona más alta en frecuencia es peor! (Por la característica cuadrática del ruido).

Problema 11

Observe el siguiente sistema



En el sistema mostrado se cumple lo siguiente (Los subíndices se refieren a los puntos encerrados en círculo)

$$y_1(t) = \sqrt{8000} \cos(2\pi f_C t + 2\pi) \int_0^t x(\tau) d\tau$$

Gn2(f)=0.5x10⁻¹⁰ w/Hz y₃(t)= f_{Δ} x(t)

 $Gn3(f)=\eta f^2/S_R$ Para $-B_T < f < B_T$

$$S_4/N_4 = 300$$

Determine el ancho de banda del mensaje

Respuesta

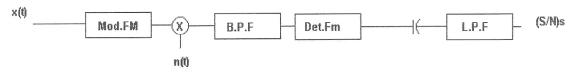
 $S_R = 8000/2 = 4000$)

De
$$y_1(t)$$
 \Rightarrow $A_c = \sqrt{8000}$ y f_{Δ} =1 $\left(x_{FM} = A_c \cos\left(2\pi f_c t + 2\pi f_{\Delta}\int_0^t x(\tau)d\tau\right)\right)$; ademas tenemos que: S4/N4 = 300, con $S_4 = f_{\Delta}^{-2}\overline{x^2}$ (De calcular la potencia en 3) y $N_4 = 2\int_0^w Gn_3df$ $\Rightarrow N_4 = \frac{2\eta}{S_R}\int_0^w f^2df$ $\Rightarrow N_4 = \frac{2\eta W^3}{3S_R}$ $\Rightarrow \overline{x^2} = Pot.Total = 2W\frac{1}{2W} = 1$ Area debajo de Gx(f) $\Rightarrow \left(\frac{S}{N}\right)_4 = \frac{3S_R}{2\eta W^3} = 300 \Rightarrow W = \sqrt[3]{\frac{3S_R}{2\eta .300}} = \sqrt[3]{\frac{12000}{2.10^{-10}.300}} = 5.85kHz$, (con η =10⁻¹⁰ y

Problema 12

Cuando un tono de de 10KHz y potencia unitaria es modulado en FM, se obtiene una potencia transmitida de 100w. Esta señal pasa por un canal ideal y a la entrada del receptor se le suma ruido blanco con densidad espectral igual a 0.5x10⁻¹⁰ w/Hz. El receptor, luego de filtrar apropiadamente, detecta con un detector ideal seguido de un bloqueador de DC y un filtro pasabajo ideal apropiado de tal forma que la relación señal a ruido final es de 5x10⁷. Determine el ancho de banda de la señal FM.

Respuesta:



$$x_{FM} = A_c \cos \left(2\pi f_c t + 2\pi f_\Delta \int_0^t x(\tau) d\tau \right) y \ x(t) = A_m \cos \omega_m t \ , \ BW = 2(A_m f_\Delta + 2f_m)$$

$$\frac{A_c^2}{2} = 100w \Rightarrow A_c = \sqrt{200}$$

Para FM(Quitando la DC) la potencia a la salida $Ss = f_{\Delta}^{2} \overline{x^{2}} con \overline{x^{2}} = 1$ (Por enunciado).

$$\Rightarrow N_s = \frac{2\eta}{S_R} \int_0^W f^2 df \Rightarrow N_s = \frac{2\eta W^3}{3S_R}, \text{ con W=10 kHz y S}_R=100$$

$$\Rightarrow \left(\frac{S}{N}\right)_{s} = \frac{3S_{R}f_{\Delta}^{2}}{2\eta W^{3}} = 5x10^{7} \rightarrow f_{\Delta} = \sqrt{\frac{\left(S/N\right)_{S}.W^{3}.2.\eta}{3.S_{R}}} = \sqrt{\frac{5x10^{7}.\left(10^{4}\right)^{3}.10^{-10}}{300}} = 4082.5Hz/V$$

Por otro lado, tenemos:
$$P_m = \frac{{A_m}^2}{2} = 1 \Rightarrow A_m = \sqrt{2}$$

$$\Rightarrow BW = 2(A_m f_\Delta + 2f_m) = 2(\sqrt{2}Vx4074,31Hz/V + 2x10^4 Hz) = 51,54kHz$$

Problema 13

En un sistema PM cuando el mensaje es un tono de amplitud unitaria, la relación señal a ruido justo antes del detector es de 20dB. Si la sensibilidad del modulador es igual a 2, determine la relación señal a ruido detectada.

SOLUCIÓN

$$\left(\frac{S}{N}\right)_{R} = \frac{S_{R}}{\eta B_{T}} = \gamma \frac{W}{B_{T}}$$

$$B_T = 2(\beta_p + 1)W \qquad \frac{B_T}{W} = 2(A_m \Phi_{\Delta} + 1) = 6$$

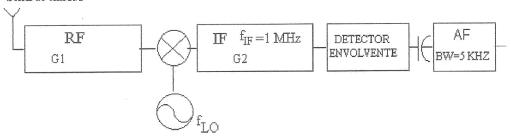
$$\left(\frac{S}{N}\right)_R = \frac{\gamma}{6} = 100$$
 $\Rightarrow_q \gamma = 600 \text{ s.s.}$

$$\left(\frac{S}{N}\right)_{D} = \Phi_{\Delta}^{2} \gamma \overline{x^{2}} = 4 \times 600 \times \frac{1}{2} = 1200$$

Problema 14

La figura ilustra un receptor superheterodino:

Señal de entrada



G1 y G2 son ganancias de voltaje

En el sistema mostrado la señal s(t) que proviene de la antena es igual a

$$s(t) = \left[0.01(1 + 0.707x(t))\cos 2\pi 10^6 t + n(t)\right]$$

donde x(t) es un mensaje con ancho de banda igual a 5KHz, media cero y potencia normalizada igual a 0.1w. Por otra parte, n(t) es ruido blanco gausseano con media cero y densidad espectral constante igual a 2.5×10^{-14} w/Hz. Ademas, G1. G2=1000

- a) Determine la mínima potencia que debe recibirse a la entrada del amplificador RF para que el detector funcione correctamente.
 - b) Determine la relación señal a ruido a la salida.

SOLUCIÓN